Лекция №8 часть 3 |
Пересечение линии с поверхностью.
Взаимное пересечение поверхностей.
Метод вспомогательных секущих плоскостей.
Метод
вспомогательных секущих сфер.
Частные случаи пересечения поверхностей
второго порядка.
|
Пересечение линии с поверхностью |
В общем случае для графического определения точек пересечения линии с поверхностью (рис.8.28) необходимо выполнить ряд геометрических построений, описываемых следующим алгоритмом: 1. Заключаем линию l в некоторую вспомогательную поверхность Δ; 1. Строим линию m пересечения данной поверхности Ф и вспомогательной поверхности Δ; 2. Определяем искомую точку К пересечения линии l и m (точка может быть не единственная). В качестве вспомогательной поверхности целесообразно использовать проецирующую цилиндрическую поверхность, направляющей которой должна служить заданная линия, а –прямолинейными образующими – проецирующие прямые. Пример: Определить точки пересечения прямой линии с поверхностью конуса вращения и определить видимость прямой по отношению к конусу. Если в качестве вспомогательной секущей плоскости можно выбрать горизонтально проецирующую или фронтально проецирующую плоскости, то в сечении получатся соответственно гипербола (рис.8.29а) или эллипс (рис.8.29б). Построение кривых линий значительно усложняет задачу. |
||||
Рисунок 8.28. Пересечение линии с поверхностью |
а) горизонтально проецирующая плоскость | б) фронтально проецирующая плоскость | ||||
Рисунок
8.29 Пересечение прямой линии с конусом
(вспомогательная секущая плоскость- проецирующая плоскость ) |
|
|||||
а) модель | б) эпюр | ||||
Рисунок 8.30. Пересечение прямой линии с конусом (вспомогательная секущая плоскость-плоскость общего положения) |
Поэтому в качестве вспомогательной секущей плоскости целесообразно выбрать такую плоскость, которая бы включала прямую l и пересекала конус по образующим (рис.8.30). Очевидно, что такая плоскость определяется прямой l и точкой S- вершиной конуса. Пусть основание конуса лежит в горизонтальной плоскости проекций, тогда линия пересечения вспомогательной секущей плоскости и горизонтальной плоскости проекций ВС пересекает основание конуса в точках D и F. Таким образом в сечении конуса вспомогательной секущей плоскостью получится треугольник DFS. Так как полученный треугольник и прямая l лежат в одной плоскости, точки их пересечения К и М и есть точки пересечения прямой с конусом.
Взаимное пересечение поверхностей |
Линией пересечения двух поверхностей является множество точек, общих для данных поверхностей. Из этого множества выделяют характерные (опорные, или главные) точки, с которых следует начинать построение этой линии. Они позволяют увидеть, в каких границах можно изменять положение вспомогательных секущих поверхностей для определения остальных точек.
К таким точкам относятся: экстремальные точки- верхняя и нижняя точки относительно той или иной плоскости проекций; точки, расположенные на очерковых образующих некоторых поверхностей точки границы зоны видимости и т.д.
Следует имеет в виду, что линия пересечения двух поверхностей в проекциях всегда располагается в пределах контура наложения проекций двух пересекающихся поверхностей.
Иногда целесообразно воспользоваться преобразованием чертежа, чтобы представить пересекающиеся поверхности (или одну из них) в частном положении.
Для определения этих точек часто пользуются вспомогательными секущими поверхностями. Поверхности-посредники пересекают данные поверхности по линиям, которые, в свою очередь, пересекаются в точках линии пересечения данных поверхностей.
Секущие поверхности-посредники выбираются так, чтобы они, пересекаясь с данными поверхностями, давали простые для построения линии, например прямые и окружности.
Из общей схемы построения линии пересечения поверхностей выделяют два основных метода - метод секущих плоскостей и метод секущих сфер.
В общем случае решение задачи по построении линии пересечения двух поверхностей может быть сведено к рассмотренным ранее задачам по определению:
1. Точек пересечения линии с поверхностью;
2. Линии пересечения плоскости и поверхности;
3. Комбинации первой и второй задачи.
Метод вспомогательных секущих плоскостей. |
Вспомогательные секущие плоскости чаще всего выбирают проецирующими и параллельными одной из плоскостей проекций - плоскостями уровня.
Этот способ рекомендуется применять, если сечения заданных поверхностей одной и той же плоскостью являются прямыми линиями или окружностями. Такая возможность существует в трех случаях:
1. Если образующие (окружности) расположены в общих плоскостях уровня;
2. Если в общих плоскостях уровня оказываются прямолинейные образующие линейчатой поверхности и окружности циклической;
3.
Линейчатые каркасы заданных
поверхностей принадлежат общим плоскостям
уровня или пучкам плоскостей общего
положения.
Точки 12 и 62 – пересечения плоскости γ с очерком проекции конуса на плоскость П2 (главным меридианом), эти точки определяют положение большой оси эллипса, кроме того точка 12 –проекция точки вершины гиперболы и одновременно принадлежит конусу (лежит на очерке фронтальной проекции конуса) и ребру призмы (линии пересечения плоскостей α и β), а точка 62- проекция точки, одновременно принадлежащей конусу и ребру призмы (линии пересечения плоскостей α и γ); точки 2, 3, 7 и 8 – характерны тем, что их профильные проекции лежат на очерке проекции конуса; 42, 52- точки, лежащие на середине отрезка 1262 (большой оси эллипса) и определяют положение малой оси эллипса; 9,10 – точки одновременно принадлежащие конусу и ребру призмы (образованному пересечением плоскостей α и β).
Рассмотрим последовательность нахождения проекций точек 4 и 5. Через фронтальные проекции этих точек проведем вспомогательную секущую плоскость φ. Эта плоскость пересекает конус по параллели p, а грань призмы по прямой линии m, параллельной ребру. На горизонтальной плоскости проекций пересечение p 1 и m 1 определяют положение точек 41 и 51. Для точного построения кривых линий пересечения поверхностей обозначенных точек не достаточно. После нахождения проекций всех точек их необходимо соединить с учетом видимости.
С помощью вспомогательной секущей плоскости b (плоскости главного фронтального меридиана полусферы) найдены точки 2 и 3, как точки пересечения главного фронтального меридиана полусферы - дуги окружности с с линиями d и g. Плоскость g - плоскость главного фронтального меридиана цилиндра, пересекает полусферу по дуге окружности - k которая в свою очередь пересекаясь с фронтальным меридианом цилиндра l и m определяет положение точек 4 и 5. Аналогично, с помощью плоскости j найдены точки 6 и 7.
Точка 8 найдена с помощью фронтально проецирующей плоскости w, параллельной горизонтальной плоскости проекций, которая пересекает полусферу по окружности - экватору h, а цилиндр по окружности основания s.
Характерными точками, в данном случае, являются точки 1- 5 и 8, лежащие на очерках проекций поверхностей. Кроме того, точки 1 и 8 определяют границу зоны видимости кривой на плоскость П1, а точки 4 и 5 – границу зоны видимости на плоскость П2.
Метод вспомогательных секущих сфер. |
При определении линии пересечения двух поверхностей вращения, при их особом взаимном расположении, не всегда рационально применять вспомогательные секущие плоскости. В некоторых случаях применяют метод вспомогательных секущих сфер – концентрических или эксцентрических.
Концентрические сферические посредники применяются при определении линии пересечения двух поверхностей вращения с пересекающимися осями. Каждая из этих поверхностей имеет семейство окружностей, являющихся линиями сечения их концентрическими сферами. Применению метода концентрических сфер должно предшествовать такое преобразование чертежа в результате которого оси обеих поверхностей должны быть расположены параллельно одной и той же плоскости проекций (рис.8.33) или одна из осей становиться проецирующей прямой, а вторая - линией уровня (рис.34). |
|||||
а) модель | б) эпюр | ||||
Рисунок 8.33. Пересечение поверхностей вращения, оси которых параллельны фронтальной плоскости проекций. |
Оси поверхностей G и Q параллельны фронтальной плоскости проекций и пересекаются в точки А (рис.8.33). Эта точка принимается за центр всех вспомогательных концентрических сфер. Каждая из концентрических сфер пересекает поверхности по окружностям - параллелям (а, b, c, d, n), фронтальные проекции которых являются прямыми линиями (а2, b2, c2, d2, n2). Проекции точек 12, 22, 32, 42, 52 и 62 пересечения проекций параллелей принадлежат проекции искомой линии пересечения поверхностей. Пересечение главных меридианов определяет крайние точки 7 и 8.
Определения линии пересечения конуса и сферы применение эксцентричных сфер, как поверхностей - посредников. Центры сфер - точки расположены на оси конуса. Сфера пересекает конус и сферу по окружностям , которые пересекаются в двух точках, принадлежащих искомой линии пересечения (рис.8.35а).
Верхняя и нижняя точки линии пересечения найдены с помощью вспомогательной секущей плоскости - плоскости главного фронтального меридиана, пересекающая конус и сферу по треугольнику и окружности, являющимися очерками поверхностей на фронтальной плоскости проекций.
Точки определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости - горизонтальной плоскости уровня, пересекающей сферу по экватору - окружности являющейся очерком шара на горизонтальной проекции, а конус по окружности - параллели.
Найденные с помощью вспомогательных поверхностей посредников точки определяют линию пересечения конуса и шара.
Рассмотрим на примере определения линии пересечения конуса Q и сферы G (рис.8.35б) применение эксцентричных сфер, как поверхностей - посредников. Центры сфер - точки А1, А2 и А3 расположены на оси конуса. Сфера радиуса R1 с центром в точке А1 пересекает конус и сферу по окружностям а и в, которые пересекаются в точках 1 и 2, принадлежащих искомой линии пересечения. С помощью сферы R2 с центром А2 и сферы R3 с центром А3 определено положение точек 3, 4 и 5,6 соответственно. Точки 7 и 8 найдены с помощью вспомогательной секущей плоскости a (плоскости фронтального меридиана), пересекающая конус и сферу по главном фронтальном меридианам k и l. Точки 9 и 10, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости b (горизонтальной плоскости уровня), пересекающей сферу G по экватору s, а конус Q по окружности p. Найденные с помощью вспомогательных поверхностей посредников точки 1...10 определяют линию пересечения конуса и шара.
Частные случаи пересечения поверхностей второго порядка |
Поверхностью
второго порядка называется множество точек
пространства, декартовы координаты,
которых удовлетворяют алгебраическому
уравнению второй степени.
Две поверхности второго порядка в общем случае пересекаются по пространственной линии четвертого порядка, которую называют биквадратной кривой.
В некоторых случаях биквадратная кривая распадается на две плоские кривые второго порядка, причем одна из них может быть мнимой.
Опуская
доказательства, приведем некоторые теоремы
и примеры, иллюстрирующие их применение.
Теорема 1. Если две поверхности второго порядка пересекаются по одной плоской кривой, то существует и другая плоская кривая, по которой они пересекаются.
Рассмотрим пример, к которому приложима теорема.
Фронтальные проекции q2 сферы Q и W2 эллиптического цилиндра W, имеющих общую окружность m(m2) с центром О(О2) (рис.8.36).
а) модель | б) эпюр | ||
Рисунок 8.36. Пересечение сферы и эллиптического цилиндра |
Плоскость σ, определяемая центром сферы С и осью i цилиндра, является плоскостью симметрии заданных поверхностей, и параллельна фронтальной плоскости проекций.
Общая окружность радиуса r – это одна из плоских кривых второго порядка распавшейся линии пересечения. Остается построить вторую кривую, плоскость α которой должна быть в условиях данного примера перпендикулярна плоскости симметрии σ, а следовательно и П2. Вторая линия пересечения (окружность) проецируется на П2 в виде отрезка прямой n2. Для ее построения следует воспользоваться точками А2 и В2, принадлежащими очеркам заданных поверхностей.
Теорема 2.(о двойном касании). Если две поверхности второго порядка имеют касание в двух точках А и В, то линия их пересечения распадается на две плоские кривые второго порядка, плоскость которых проходит через отрезок АВ, соединяющий точки касания.
а) модель | б) эпюр | ||
Рисунок
8.37 Пересечение сферы и эллиптического
цилиндра имеющих две точки касания |
Например, по двум окружностям m и n пересекается сфера S и эллиптический цилиндр Q (рис.8.37). Точки касания и касательные плоскости обозначены соответственно через А, В, α, β. Окружности, на которые распалась линия пересечения поверхностей, расположены во фронтально- проецирующих плоскостях γ и δ.
Теорема 3. (теорема Г. Монжа). Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки линий касания.
а) модель | б) эпюр | ||
Рисунок 8.38. Пересечение конуса и цилиндра имеющих общую вписанную сферу |
В соответствии с этой теоремой линия пересечения конуса Σ и цилиндра Q (рис.8.38), описанных около сферы W, будут плоскими кривыми – эллипсами (расположенными в плоскостях a и b), фронтальные проекции которых изображаются прямыми А2В2 и С2Д2,
Теорема
Монжа находит эффективное применение при
конструировании трубопроводов.
Теорема
4. Если две поверхности
второго порядка имеют общую плоскость
симметрии, то линия их пересечения
проецируется на эту плоскость в виде кривой
второго порядка.
а) модель | б) эпюр | ||
Рисунок 8.39. Пересечение сферы и цилиндра |
Плоскость симметрии определена осью симметрии цилиндра Q и центром сферы S (рис.8.39). Плоскости принадлежат и симметричные сами себе точки A, B, C и D линий пересечения. Проекция же линий на фронтальную плоскость имеет форму параболы m2 и аналитически описывается формулой параболы.