Лекция №8 часть 3

Лекция №8 часть 4

Лекция №9

Развертка поверхности. Основные свойства развертки. Развертка поверхности многогранников. Развертка цилиндрической поверхности. Развертка конической поверхности. Плоскость касательная к поверхности. Задание касательной плоскости на эпюре Монжа. Поверхность касательная к поверхности.

 

 

Развертка поверхности

Разверткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).

Приступая к изучению развертки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую пленку. Некоторые из представленных таким образом поверхностей можно путем изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещен с плоскостью без разрывов и склеивания, то такую поверхность называют развертывающейся, а полученную плоскую фигуру – ее разверткой.

  Лекция №8 часть 3 начало

Основные свойства развертки

  1. Длины двух соответствующих линий поверхности и ее развертки равны между собой;

  2. Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке;

  3. Прямой на поверхности соответствует также прямая на развертке;

  4. Параллельным прямым на поверхности соответствуют также параллельные прямые на развертке;

  5. Если линии, принадлежащей поверхности и соединяющей две точки поверхности, соответствует прямая на развертке, то эта линия является геодезической.

  Лекция №8 часть 3 начало

Развертка поверхности многогранников

Разверткой многогранной поверхности называется плоская фигура, получаемая последовательным совмещением всех граней поверхности с плоскостью.

Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности – плоских многоугольников.

Существует три способа построения развертки многогранных поверхностей:

1. Способ нормального сечения;

2. Способ раскатки;

3. Способ треугольника.

Пример 1. Развертка пирамиды (рис. 8.40).

Модель рисунка в bCAD Модель рисунка в ACAD Построение развертки пирамиды в пространстве Рисунок 8.40. Пирамида и её развертка

При построении развертки пирамида применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников – граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих. Для этого необходимо знать натуральную величину ребер и сторон основания.

Определение истинной величины основания и ребер пирамиды Рисунок 8.41. Определение истинной величины основания и ребер пирамиды

Алгоритм построения можно сформулировать следующим образом (рис. 8.41):

  1. Определяют натуральную величину основания пирамиды (например методом замены плоскостей проекций);

  2. Определяют истинную величину всех ребер пирамиды любым из известных способов (в данном примере натуральная величина всех ребер пирамиды определена методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций и проходящей через вершину пирамиды S);

  3. Строят основание пирамиды и по найденным трем сторонам строят какую-либо из боковых граней, пристраивая к ней следующие (рис.8.42).

Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки. 

Примером первой точки на рисунках служит точка К0 и КОD, а иллюстрацией второго случая являются точки М0 и М0*. Для определения точки К0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ ( метод замены плоскостей проекций) и (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S0М0 и, наконец, точки К0.

Разертка пирамиды на эпюре Рисунок 8.42. Построение развертки пирамиды

 

Пример 2. Развертка призмы (рис.8.43).

Развертка способом нормального сечения Рисунок 8.43. Развертка призмы способом нормального сечения

В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.

Пересекая призму вспомогательной плоскостью α, перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения – треугольника 1, 2, 3, а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.

В дальнейшем строям отрезок 10-10*, равный периметру нормального сечения. Через точки 10, 20, 30 и 10* проводят прямые, перпендикулярные 10-10*, на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 10, отложены отрезки 10D0=14D4 и 10А0=14А4.

Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание.

Пример 3. Развертка призмы, частный случай, когда основание призмы на одну из плоскостей проекций проецируется в натуральную величину (рис. 8.44).

Развертка способом раскатки Рисунок 8.44. Развертка призмы способом раскатки

Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.

Затем новую проекцию призмы вращают вокруг ребра С4F4 до тех пор пока грань ACDF  не станет параллельной плоскости П4. При этом положение ребра С4F4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П1 то на эту плоскость проекций они проецируются без искажения т.е. R=A1C1=D1F1), расположенных в плоскостях, перпендикулярных ребру С4F4. Таким образом, траектории движения точек A и D на плоскость П4 проецируются в прямые, перпендикулярные ребру С4F4

Когда грань ACDF станет параллельна плоскости П4, она проецируется на неё без искажения т.е. вершины  A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF. Таким образом, засекая перпендикуляры, по которым перемещаются точки A4 и D4 дугой радиуса R=A1C1=D1F1, можно получить искомое положение точек развертки A0 и D0.

Следующую грань АBDE вращают вокруг ребра AD. На перпендикулярах, по которым перемещаются точки B4 и E4 делают засечки из точек A0 и D0 дугой радиуса R=A1B1=D1E1. Аналогично строится развертка последней боковой грани призмы.

Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П4 и проходящую через ребро С4F4.

Построение на развертке точки К, принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую NМ, параллельную боковым ребрам, которая затем построена на развертке. 

  Лекция №8 часть 3 начало

Развертка цилиндрической поверхности

Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму (рис.8.45). Чем больше углов в призме, тем точнее развертка ( приn → призма преобразуется в цилиндр).

Развертка цилиндрической поверхности Рисунок 8.45. Развертка цилиндрической поверхности

  Лекция №8 часть 3 начало

Развертка  конической поверхности

Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду (рис.8.46). 

Развертка конической поверхности Рисунок 8.46. Развертка конической поверхности

Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол  φ=360о r / l, где r – радиус окружности основания конуса.

  Лекция №8 часть 3 начало

Плоскость касательная к поверхности

Касательные плоскости играют большую роль в геометрии. В теоретическом плане плоскости, касательные к поверхности, используются в дифференциальной геометрии при изучении свойств поверхности в районе точки касания.

Решение задач, возникающих при проектировании и конструировании поверхностей-оболочек, требует проведения касательных плоскостей и нормалей к поверхности. При построении на проекционном чертеже очерков поверхностей по заданному направлению проецирования, при определении контуров собственных теней также необходимо строить касательные плоскости к поверхности. Построение касательной плоскости к поверхности представляет частный случай пересечения поверхности плоскостью.

Плоскость, касательная к поверхности, имеет общую с этой поверхностью точку, прямую или плоскую кривую линию. Плоскость в одном месте может касаться поверхности, а в другом пересекать эту поверхность. Линия касания   может одновременно являться и линией пересечения поверхности плоскостью.

Плоскость α (рис.8.47), представленную двумя касательными, проведенными в точке А поверхности Ф, называется касательной плоскостью к поверхности в данной ее точке.

Любая кривая поверхности проходящая через  точку А, имеет в этой точке касательную прямую, принадлежащую плоскости α.

Не в каждой точке поверхности можно провести касательную плоскость. В некоторых точках касательная плоскость не может быть определена или не является единственной. Такие точки называются особыми точками поверхностей, например вершина конической поверхности.

Прямую линию, проходящую через точку касания и перпендикулярную касательной плоскости, называют нормалью поверхности в данной точке.

Модель рисунка в bCAD Модель рисунка в ACAD Рисунок 8.47. Плоскость, касательная к поверхности

В зависимости от вида поверхности, касательная плоскость может иметь с поверхностью как одну общую точку, так и множество точек. В зависимости от того, с каким случаем касания, мы имеем дело, точки, принадлежащие поверхности подразделяют на эллиптические, параболические и гиперболические:

  1. Если касательная плоскость имеет с поверхностью только одну общую точку, то все принадлежащие поверхности линии, проходящие через эту точку, будут расположены по одну сторону от касательной плоскости (рис.8.47). Такие точки называются эллиптическими.

  2. В случае проведения касательной плоскости к торсовой поверхности, образованной непрерывным перемещением касательной прямой к некоторой пространственной кривой линии (частный случай - коническая поверхность), плоскость будет касаться поверхности по прямой линии – образующей. Точки, принадлежащие этой образующей, называются параболическими (рис.8.48).

  3. Точки поверхности, касательная плоскость, к которым пересекает поверхность, называют гиперболическими (рис.8.49). Гиперболическая точка принадлежит линии, по которой касательная плоскость пересекает поверхность.

Модель рисунка в bCAD Модель рисунка в ACAD Рисунок 8.48. Параболические точки касания Модель рисунка в bCAD Модель рисунка в ACAD Рисунок 8.49. Гиперболические точки касания

  Лекция №8 часть 3 начало

Задание касательной плоскости на эпюре Монжа

Так как плоскость однозначно определяется двумя пересекающимися прямыми, то для построения касательной плоскости к поверхности в данной точке, достаточно через эту точку провести две линии принадлежащие поверхности и к каждой из них провести касательные в заданной точке.

Касательной прямой к поверхности называется прямая, касательная к какой-либо кривой принадлежащей поверхности.

Рассмотрим на примере (рис.8.50) построение касательной плоскости  к параболоиду вращения Ф в точке М.

Для решения этой задачи через точку М проведем две кривые плоские линии n и m принадлежащие поверхности Ф. Линия n - окружность, лежащая в горизонтальной плоскости уровня проведенной через точку М, линия m – парабола, лежащая в горизонтально проецирующей плоскости проведенной через вершину параболоида и точку М. Чтобы построить касательную плоскость достаточно провести к данным линиям касательные.

Касательная к плоской кривой линии лежит в одной плоскости с ней. Так как линия n лежит в горизонтальной плоскости то на плоскость П1 она проецируется в натуральную величину n1, что позволяет сразу построить горизонтальную проекцию касательной к ней t11. На плоскость П2 - окружность проецируется в прямую n2, а фронтальная проекция касательной t21 будет с ней совпадать.

Линия m лежит в горизонтально проецирующей плоскость, поэтому её горизонтальная проекция m1 – прямая, определяющая и горизонтальную проекцию касательной t12.  

Решение задачи на эпюре Рисунок 8.50. Построение касательной плоскости к параболоиду вращения

На плоскость П2 парабола проецируется с искажением m2, поэтому для построения касательной, повернем поверхность Ф вокруг оси, до совмещения плоскости параболы с фронтальной плоскостью проекций, проекция точки М2 при этом переместиться в положение точки М2*

Через эту точку проведем касательную t22* к очерку параболоида. И обратным вращением находим проекцию касательной t22.

Две пересекающиеся в точке М2 прямые t21 и t22 определяют положение фронтальной проекции касательной плоскости α2, а прямые t11 и t12 – горизонтальную проекцию касательной плоскость α1.

Таким образом на эпюре получена плоскость α касательная к поверхности параболоида вращения в точке М.

  Лекция №8 часть 3 начало

Поверхность касательная к поверхности

 Две поверхности могут соприкасаться одна с другой в точке (рис.8.51), по прямой (рис.8.52) или по кривой линии (рис.8.53). Соприкасание может быть внешнее (рис.8.51) или внутреннее (рис.8.53).

Модель рисунка в bCAD Модель рисунка в ACAD Рисунок 8.51.Внешнее касание шара и конуса Модель рисунка в bCAD Модель рисунка в ACAD Рисунок 8.52. Касание цилиндра и конуса

Соприкасание поверхностей 2-го порядка можно рассматривать как частный случай их пересечения. При этом справедливо следующее положение: если биквадратная кривая линия пересечения двух поверхностей второго порядка распадается на пару совпавших кривых 2-го порядка или на четыре совпавшие прямые, то имеется касание поверхностей по линии 2-го или 1-го порядка соответственно.

Отметим без доказательства следующие следствия частных случаев касания поверхностей второго порядка:

1. Если две поверхности 2-го порядка касаются в трех точках, то они соприкасаются по кривой 2-го порядка;

2. Если две поверхности 2-го порядка касаются друг друга по кривой линии, то эта линия является кривой 2-го порядка;

3. Если две поверхности 2-го порядка описаны около третьей поверхности 2-го порядка (или вписаны в неё), то они пересекаются по линии, распадающейся на две кривые 2-го порядка (теорема Монжа).

 

Модель рисунка в bCAD Модель рисунка в ACAD Рисунок 8.53. Внутреннее касание шара и конуса

 

 Лекция №8 часть 3

начало

Лекция №9